The 1980s may best be remembered as NB Power’s entry into the nuclear age with the opening of the Point Lepreau nuclear generating station. The decade was also marked by a renewed emphasis on interconnections and export contracts with other utilities, the consolidation of the use of New Brunswick coal as a reliable source of energy, the beginning of new research and development programs, the application of computer technology to all facets of NB Power’s operations, and a recognition of the importance of conservation and the environment.

In 1980, the Commission’s total generating capacity stood at over
the nineteen eighties - the nuclear age

2,500,000 kilowatts. This energy was being produced in six hydro plants, six thermal generating stations, one diesel plant, and a small combustion turbine unit. In December 1981, the construction of the nuclear generating plant at Point Lepreau was completed. Phased testing of the unit was carried out in 1982. By February 1983, the world’s first Candu 600 was supplying energy to the NB Power grid. Within a very short time, it was supplying more than 30% of the electricity used in the province as well as providing one-third of its output for export sales.

The success of the Eel River interconnection, together with the need to...
the nineteen eighties - the nuclear age

strengthen the transmission capabilities in northwestern New Brunswick, led NB Power to negotiate a second major HVDC link with Hydro-Quebec just north of Edmundston. Completed in 1985, this project doubled the interchange capacity with Quebec and added 400 km of new high voltage 345 kV transmission line.

The decade also saw a change in NB Power’s relationship with the coal mining industry in the province. In 1986 NB Power assumed ownership of NB Coal. The Minto coalfields, mined for over 350 years, are probably the oldest coal mines in North America still actively worked. The coal, which is extremely high in sulphur and...
expensive to mine, raised environmental concerns. New combustion techniques are currently being developed to reduce sulphur dioxide emissions from coal-burning plants. Emphasis on research and development intensified during the 1980s. The successful research and development of a circulating fluidized bed boiler at the Chatham generating station permitted NB Power to diversify fuel types and experiment with new low-grade fuels.

This advanced technology employs limestone in the combustion process to capture gases, which, if released into the atmosphere, produce acid rain.

By 1983, the growth of the utility placed a strain on the old head office...
building and employees moved next door to a new Bank of Montreal office building. Three years later, NB Power exercised its option to purchase the building and assumed ownership. The old headquarters became the home of the construction projects staff.

In the early 1980s, NB Power embarked on a long-range plan to develop computer systems. The application of computer technology improved productivity and provided ready access to information. The Commission installed an integrated office information system which includes electronic messaging, word processing, spreadsheets, business graphics and access to management.
and project information. This was accomplished through a link to the mainframe computers installed in head office, the plants and districts. Technological advances have enhanced the areas of inventory control and computer-aided design, both of which are vitally important to construction and maintenance staff.

The efficient use of energy resources is crucial in an age when demand for nonrenewable energy sources is growing. During the 1980s, NB Power actively promoted programs aimed at the conservation of energy. Subsequently, residential, commercial and industrial customers received technical and financial assistance to aid in the development of energy-efficient facilities.

Water Street, St. Andrews, before and after underground wiring installation
(Charles Mason, St. Andrews, NB)

Frank MacLaren, president 1989